
Abstract - A novel segmentation technique which may be useful for
two dimensional (2D) magnetic resonance (MR) image
segmentation is presented. The technique utilizes a dynamic target
tracking algorithm and a Kalman filter and permits edges to be
followed in the presence of intensity variation similar to that
found in MR images. Segmentation of two synthetic test images,
one with intensity nonuniformity and one without, is performed.
Fuzzy c-means clustering with pixel intensity features is used to
segment the same test images for qualitative comparison.

Keywords - Image segmentation, edge tracing, Kalman filter,
intensity nonuniformity.

I. INTRODUCTION

Magnetic Resonance (MR) images are excellent sources of
patient-specific anatomical information. Automatic
segmentation of these images into component tissue classes
provides a method for reproducible extraction of this
information. One problem that complicates this process,
however, is intensity nonuniformity, an artifact in MR images
which is evident as a gradual variation in intensity over
otherwise identical tissue classes. Intensity nonuniformity has
several causes, notably, inhomogeneity in radio frequency (RF)
transmitter and receiver coils during image acquisition [1].

MR images provide excellent soft tissue contrast so that
intensity-related features are natural choices for use with
automatic segmentation methods. However, compensation for
intensity nonuniformity must be included in order for such
methods to be effective.

Although it is possible to perform some compensation
during image acquisition, equipment or protocol modifications
are typically required. Furthermore, retrospective application of
these corrective measures is not possible. Therefore,
compensation applied as a post-processing step is considered to
be desirable [2].

Adaptive fuzzy c-means [2], [3], and statistically-based
methods [4], [5] are examples of techniques which have been
developed to perform automatic image segmentation in the
presence of MR intensity nonuniformity. Other methods, such
as nonlinear filtering [6], are intended to address the
nonuniformity independently, permitting subsequent
segmentation of the intensity corrected image.

Image segmentation can be performed by voxel labeling,
involving classification of each image voxel or by
identification of the bounding surfaces of objects in the image.
The adaptive fuzzy c-means methods [2], [3] and the statistical
methods [4], [5] are examples of techniques which perform
voxel labeling.

Determining the object boundaries in two dimensional
images can be done by application of active contours [10] or by
edge tracing [11]. We describe a technique for edge tracing

which includes a Kalman filter and a dynamic target tr
algorithm to associate edge pixels into object boundaries.

II. METHODOLOGY

A. Synthetic Images

Fig. 1 panels (a), and (c) show the two synthet
images. The shapes of the objects in the images have
chosen to resemble cortical gray matter and white matter 
images of the brain. Each image has size of 200x200 
with 256 gray levels. The unbiased image was form
interpolating a small set of points with cubic splines to
boundaries of closed regions. These boundaries wer
converted to discrete pixels and the enclosed regions
filled with a selected gray level value. The unbiased test
has three gray levels with a difference of fifty gray 
between the brightest region and the intermediate in
level.

In MR images, intensity nonuniformity has 
approximated by exponential functions [1]. For the test im
the gain field ( g ), which simulates the in
nonuniformity, was formed using a two dimen
exponential function:

)2)(2
2)(1exp( cYYkcXXkg −−−−=

where ),( YX  are pixel coordinates and ),( cc YX  a
coordinates of the image centre. Parameters 1k and k
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Fig. 1 Synthetic test images.
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chosen to provide a fifty percent intensity reduction at the
image edges along the principal axes.

The biased image was formed by multiplying the unbiased
image by the gain field, thus simulating an image with intensity
nonuniformity.

B. Fuzzy c-Means Clustering

Fuzzy c-means clustering is a pattern recognition technique
which is used in image segmentation [7]. Each pixel is
evaluated according to a selected feature set, forming a set of
vectors, or a set of points, in the feature space. Clusters are
regions in the feature space with a high density of such points.
A prototype vector, or cluster centre for each cluster is found
by an iterative computation that minimizes the objective
function

2

1 1
ik

N

k

c

i

m
ik DuF ×� �=

= =
(2)

where c  is the number of clusters to form, N  is the number of
pixels in the image, m  is the fuzzification factor (typically
chosen to be 2), iku  is the membership of pixel k  in cluster i ,

ikik vfD −=  is the distance between the k th feature vector

)( kf  and the i th prototype vector )( iv . Once the prototype
vectors and membership values have been found, each pixel
can be assigned to the class of maximum membership to
complete the segmentation.

Fuzzy c-means clustering is used here to demonstrate the
problem that can occur when image segmentation is performed
without attention to the effect of nonuniform intensity. The
features selected for each pixel are the pixel intensity and the
intensity of the four nearest neighbours.  The number of
clusters is three (ie.c = 3) and the fuzzification factor is 2.

C. Dynamic Edge Tracing

Segmentation by edge tracing involves edge detection
followed by association of edge pixels into object boundaries.
In the case of the edge tracing method described here, edge
detection is performed on the input image followed by a line by

line scan of the edge image. On each line scan, the edg
positions and image intensity at the edge pixel are used a
to a multiple target, dynamic tracking algorithm. The sc
procedure introduces a history, allowing edges in the im
be followed along what amounts to a time dimension
new line brings a set of updated edge positions which ar
associated with existing edge data from the previous
Edge positions that cannot be associated with an existing
are used to start two new tracks, one to the left and one
right of the scan direction. Tracks which follow the sam
but in different directions will terminate on each other.
occurrences and the common start points are used to ass
the edges at the end of the scan.

The effective “movement” of the edge from one line
next during the image scan simulates a dynamic s
Dynamic systems, linear or nonlinear, are described b
and state transitions. State is a quantitative description o
and present behaviour, sufficient information to predict
behaviour. State transition is the description of how one 
transformed into another. For example, in aircraft tra
state would include the position and velocity of the a
The aircraft position could be predicted at a future time
on its current position and current velocity.

Automatic tracking algorithms are normally used to m
the movement of aircraft or other targets of interest [8].
classical target tracking application, sensors p
measurements of the target state (eg. position and veloc
the tracking system at equal time intervals. The measured
data is compared to predicted target data and if suf
correlation exists, the measured data is incorporated in
target history and a new prediction is formed for the nex
sample. In this way, observations taken at different tim
be associated together and the path taken by the target 
followed.

The functions of the tracking system are data asso
and state estimation. Data association is the process by 
new data is correlated with existing data and the path of a
is updated. State estimation is the process whereby a
state estimate is computed using a priori noise statisti
past samples and whereby a predicted target st
determined. The target state estimate and next s
prediction are produced by a tracking filter with the pre
presented to the data association process at the nex
interval. A block diagram of such a tracking system is sh
Fig. 2.

In the edge tracing method described here, the tr
filter used for state estimation is a Kalman filter [9
recursive solution to the discrete time, linear, min
variance estimation problem and the statistical estimato
often used in dynamic tracking [8]. For a given trac
Kalman filter is used to predict the edge position on th
line, facilitating the association of the next set of edge po
into the existing edge tracks.

The Kalman filter is defined with the assumption
linear, dynamic system and zero mean, gaussian 
Gaussian distributions and linear dynamics are 
assumptions especially if statistical data is not largely av
[9].
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Fig. 2. Tracking System Block Diagram
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The Kalman filter can be used to estimate the state of a
discrete process that is governed by the linear, stochastic
difference equation

kkkk wxAx +=+1 (3)
where k is the step counter, kx  is the state vector at step k ,

kA  is the state transition matrix, and kw  is the process noise
vector. The process noise is assumed to be zero mean with
gaussian statistics. Measurements related to the target are also
assumed to contain zero mean, gaussian noise:

kkkk vxHz +=  (4)
where kz  is the measurement vector at step k , kH  is the
measurement matrix, and kv  is the measurement noise vector.

The actual state of the target is not known and the Kalman
filter is used to estimate it from the measurement and a
previously determined state prediction. The estimate is taken to
be a linear combination of the prediction and the difference
between the measurement and the predicted measurement.

)ˆ(ˆˆ −− −+= kkkkkk xHzKxx  (5)

where kx̂ is the state estimate at step k , −
kx̂  is the state

prediction at step k , and kK  is the Kalman filter gain. Also,
the error covariance matrices are given by:

})ˆ)(ˆ{( T
kkkkk xxxxEP −−=  (6)

})ˆ)(ˆ{( T
kkkkk xxxxEP −−− −−=  (7)

where kP  is the a posteriori error covariance matrix, −
kP  is the

a priori error covariance matrix, and {}E  represents
mathematical expectation. The Kalman filter gain ( kK ) is
determined by minimization of the error covariance matrix
( kP ) [9], [12].

At each measurement interval the Kalman filter gain matrix,
state estimate vector, and error covariance matrix are updated.

1)( −−− += k
T

kkk
T

kkk RHPHHPK (8)

)ˆ(ˆˆ −− −+= kkkkkk xHzKxx (9)
−−= kkkk PHKIP )(  (10)

where }{ T
kkk vvER =  is the measurement noise covariance

matrix and I  is the identity matrix.
Prediction of the next state is also done at each time interval

kkk xAx ˆˆ 1 =−
+  (11)

k
T

kkkk QAPAP +=−
+1  (12)

where }{ T
kkk wwEQ =  is the process noise covariance

matrix.
The data association process will utilize the predicted error

covariance matrix to form a bounding window around the
predicted measurement. Any measurement that appears within
this window is a candidate for association.

We use a simple two state filter where target state consists
of position and velocity and the measurement is of position

only. Under these conditions, kA  and kH  can eas
defined. That is, for

T
k YXYXx ],,,[ ��=

where ),( YX represents the target position in two dime

and ),( YX ��  represents the target velocity in two dime
and assuming a unit time step, the state transitio
measurement matrices become:

�
�
�
�

�

�

�
�
�
�

�

�

=

1000
0100
1010
0101

kA  (14), �
�

�
=

0010
0001

kH

which is to say that the next target state will be estimate
the current position and current velocity, that only posi
measured, and that no particular measurement correc
required. Furthermore, these two matrices will remain co
for all k .

Our calculations are done in this manner with the exc
that three dimensions are used, these being the two coord
of the edge pixel and the image intensity at the edge
location.

III. RESULTS

Fig. 3 shows the results from segmentation of the un
and biased test images by the edge tracing technique and
fuzzy clustering approach. Panels (b) and (d) show
clustering works well when the intensity is uniform (b) b

a) Edge tracing
- unbiased image.

b) Fuzzy clustering
- unbiased image

c) Edge tracing
- biased image.

d) Fuzzy clustering
- biased image.

Fig. 3. Segmentation results.
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given sufficient intensity nonuniformity, errors occur in the
pixel assignments. In Panel  (d), peripheral portions of the high
intensity region are classed with lower intensity pixels and the
central portion of the high intensity region is expanded,
exhibiting a circularly shaped artifact due to the exponentially
shaped intensity variation.

 The results from the dynamic edge tracing algorithm are
shown in (a) and (c). In each case, the high intensity region is
outlined with a black contour and the medium intensity region
is outlined with a white contour. These lines coincide with the
edge pixels very well.

The fit was evaluated by reconstructing the test image using
each of the two sets of edge contours. Upon comparison with
the original, unbiased test image, it was found that the
reconstruction using contours from the unbiased image
segmentation contained one pixel classified incorrectly. The
reconstruction using contours from the biased image
segmentation contained ten misclassified pixels, amounting to
0.025 percent of all image pixels.

IV. DISCUSSION

Quantitative comparison of the fuzzy clustering result with
the edge tracing result is not intended, however, having the two
side by side gives an opportunity to examine the advantages of
each. Although fuzzy clustering requires that the number of
classes be known a priori, it can be extended to perform
segmentation of three dimensional (3D) images relatively
easily. The edge tracing method does not require the number of
tissue classes to be known a priori but is not as easily extended
to 3D.

When 2D images are considered, operation without a priori
knowledge of the number of tissue classes is a big advantage
especially if the goal is automatic analysis of images where
pathology may be involved. Fuzzy clustering may not position
a cluster prototype so as to identify a relatively small region of
distinct intensity in an image when there are much larger
numbers of pixels in other intensity groups. Consideration of
the objective function in (2) will confirm this. Since the
objective function is based on minimizing the sum of all
distances, a small but distinct group in the feature space may
not have enough accumulated distance to attract a cluster
centre. The edge tracing technique, however, would find all
regions where there is an identifiable edge.

Edge tracing methods require some degree of edge
continuity to be successful [11]. The edge tracing technique
described here does not require adjacent pixel connectivity.
Since the edge position is permitted to have a “velocity”, the
current velocity for that edge will determine where the
algorithm searches for the next edge pixel.

V. CONCLUSION

Edge detection followed by a line by line scan of the edge
image simulates a dynamic system where the edge position
“moves” as the scan proceeds. The application of a dynamic
tracking algorithm allows the edge to be followed, permitting
edge pixels to be associated into object boundaries. Edge

tracing performed in this manner and using three dime
(the two edge pixel position coordinates and the 
intensity at the edge pixel position) appears to be a 
method for 2D image segmentation in the presence of 
intensity nonuniformity.
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